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We describe a new analytical formula for the electron stopping power (SP) that was developed for electron
energies between 200 eV and 30 keV. This formula describes the product of the SP and the inelastic mean free
path (IMFP), and is a simple function of atomic number and electron energy. Parameters in the expression were
obtained from a fit to SPs and IMFPs computed from experimental optical data for a group of 27 elemental solids,
and a mean deviation of 10.4 % was found between SPs from optical data and from the new formula. This mean
deviation was less than that found in similar comparisons with SPs from empirical modifications of the Bethe SP
equation by Joy and Luo and by Fernandez-Varea et al. We show illustrative comparisons of SPs calculated from
optical data, measured SPs, and SPs from the three predictive SP expressions for C, Si, Cu, Pd, and Pt. The three
expressions have been generalized to compounds, and we show similar comparisons for indium antimonide and
guanine. The new SP expression is believed to be suitable for Monte Carlo simulations with the continuous
slowing-down approximation.

1. Introduction
Monte Carlo (MC) simulation of electron trajectories in

solids is a powerful tool in calculations associated with elec-
tron-probe microanalysis (EPMA) and surface-sensitive elec-
tron spectroscopies such as Auger electron spectroscopy
(AES) and X-ray photoelectron spectroscopy (XPS). As in-
dicated in recent reviews [1,2], the trajectories of incident or
signal electrons in the sample can be represented as a sum
of two independent Poisson stochastic processes describ-
ing the elastic and inelastic interactions of the electrons. It
is clearly important to use the most reliable available data to
describe these interactions. Much effort has been devoted
to determine differential cross sections (DCSs) for elastic
scattering of electrons by atoms. Twelve sources of elastic
DCS data are listed in a recent review [3], and several data-
bases are readily available that provide elastic DCSs in suf-
ficient detail for MC simulations relevant to EPMA, AES,
and XPS [4-7]. However, only limited data are available for
total cross sections and differential cross sections as a func-
tion of energy loss for inelastic scattering of electrons in
solids.

Inelastic cross sections are needed in MC simulations for
AES for electron energies between 50 eV and 30 keV. Deter-
mination of the surface composition requires knowledge of
the so-called backscattering factor that accounts for the

change of the Auger-signal intensity due to electrons
backscattered from a solid [1,8-12]. Information on the lat-
eral distribution of backscattered electrons leads to evalua-
tions of the analysis area and the lateral resolution in scan-
ning Auger microscopy (SAM) [13,14].

The Tougaard “universal” cross sections [15,16] provide
approximate descriptions of the differential inelastic-scat-
tering cross sections (or, equivalently, the differential in-
verse inelastic mean free path (DIIMFP)) in different types
of materials for relatively small energy losses (less than about
50 eV). The Tougaard expressions are useful in analyses of
XPS spectra for electron energies between about 300 eV and
1500 eV [17]. For MC simulations in AES, we need similar
expressions that could be used for a range of materials over
a wider range of energy losses and a wider range of electron
energies.

Another approach is to assume that the DIIMFP, K(E,T ),
for electron energy E and energy loss T, is proportional to
the electron energy-loss function (ELF) [12],

(1)

where ),( qωε  is the complex dielectric constant,  is fre-
quency (related to energy loss by          ), and q is the
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momentum transfer. Since optical data are available for cer-
tain elemental solids and compounds, the DIIMFP can be
obtained in the optical limit, i.e., for             . This approach
was very effective in calculations of the backscattering fac-
tor [12] although there were major computational difficulties
in creating the sampler providing the energy losses due to
the complex shape of the loss function in some solids. Fur-
thermore, this method is limited to those solids for which the
needed loss functions are available.

The difficulties of simulating individual electron energy
losses can be overcome with the so-called continuous slow-
ing down approximation (CSDA) that has been frequently
used in MC simulations for EPMA. The CSDA is based on
the assumption that the electron energy decreases continu-
ously as a function of distance traveled in a solid. The in-
elastic interactions in a given solid are described by the
stopping power (SP), S = −dE / dx, a function giving the
energy change, dE, per increment of trajectory, dx. Consid-
erable data are available for the stopping power in different
materials [7,18,19]. In addition, a number of analytical ex-
pressions [20-22], based in general on the nonrelativistic
Bethe SP equation [23], have been proposed for the SP in
any material. Unfortunately, the Bethe expression is not valid
for electron energies smaller than about 10 keV [24] and
consequently should not be used in simulations of electron
transport for AES and XPS applications. Modifications to
the Bethe formula have been made to extend its range of
utility [20-22] but this approach is limited to the particular
solids for which needed parameters have been determined
[25].

There is an obvious need for a universal source of SPs
for electron energies below 10 keV. We have recently pro-
posed [25] an empirical predictive expression for the SP
based on SPs and inelastic mean free paths (IMFPs) calcu-
lated from optical data for a group of 27 elemental solids
[24,26]. This expression was considered useful for electron
energies between 200 eV and 30 keV. In the following sec-
tions, we present a short review of these results (with data
for C, Si, Cu, Pd, and Pt) and show comparisons of SPs
calculated from optical data for two compounds (indium
antimonide and guanine) with SPs from our predictive ex-
pression and two others [21,22].

2. Calculations of the stopping power and the inelastic mean
free path

Penn [27] has described an algorithm for the calculation
of electron IMFPs from a model dielectric function ε(ω,q).
The differential inelastic-scattering cross section, per atom
or molecule, for an electron in an infinite medium is:

    (2)

where m  is the electronic mass, e0 is the electronic charge,

and M  is the density of atoms or molecules per unit volume.
The dependence of the ELF on ω can be obtained from ex-
perimental optical data for the material of interest (for q = 0)
and the dependence of the ELF on q can be obtained from
an appropriate theoretical model [28]. In our work, we uti-
lized the Lindhard [29] dielectric function to describe the q-
dependence of the ELF. The IMFP can be obtained from an
integration of Eq. (2) over the kinematically allowed regions
of ω and q [30]. The SP can be obtained from a similar inte-
gration of the ELF multiplied by (ω/q) [18,24].

3. Predictive formulas for the stopping power
3.1 The S-lambda approach

The differential inelastic-scattering cross section,
           , is related to the DIIMFP by:

(3)

where       is the IMFP and M  is the atomic density. The
stopping power can be defined from the above equation as:

(4)

where the integration is extended over the allowed range of
energy losses. On the other hand, the IMFP is expressed by
the DIIMFP according to the obvious relation:

(5)

Assuming that the allowed range of energy losses extends
up to the current energy E, Eqs. (4) and (5) lead to the ex-
pression [1,31]:

(6)

where          is the mean energy loss for an inelastic interac-
tion. As follows from Eq. (6), the mean energy loss must be
a monotonically increasing function of E since the DIIMFP
is always positive. We observe a maximum in the loss func-
tion [and in the DIIMFP, as follows from Eq. (1)] usually
below 100 eV. Thus, we may expect that the mean energy
loss,                , is a relatively weak function of energy at
energies exceeding 100 eV.

IMFPs and SPs were calculated from experimental optical
data for 27 elemental solids (C, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu,
Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au,
and Bi) [24,26]. For each element, IMFPs and SPs were cal-
culated for 81 energies that were equally spaced on a loga-
rithmic scale between 10 eV and 30 keV. Analysis of the
products        led to the following SP predictive formula
[25]:
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                 (eV/Å)       (7)

where Z is the atomic number, E is expressed in eV,      is
expressed in Å, and      ,        , and       are fitted coefficients.
From  a fit to the  combined data set for energies between
200 eV and 30 keV, the following values of the coefficients
were obtained:        = 11.52,        = 0.01639, and         = 0.03386.
The mean percentage deviation, ∆Sj, between SPs calcu-
lated from optical data, Sij, and SPs predicted from Eq. (7) for
the ith energy and the jth element (with atomic number Zj)
can be obtained from:

(8)

where       is the number of energies. Values of ∆Sj for the 27
considered elements are shown in Fig. 1 (the data point for C
is for glassy carbon). The mean percentage deviation aver-
aged additionally over all elements was found to be 10.4 %.

Avogadro constant,      is the density, A is the atomic mass,
E is the current energy, and J is the mean excitation energy.
The Bethe equation is known to fail at low electron energies.
For                        (e.g., E < 67 eV for C and E < 678 eV for Pt
[18]), the stopping power becomes negative which is physi-
cally unrealistic. The Bethe equation is also unlikely to be
valid for energies less than about 10 keV [24].

Several attempts have been made to modify the Bethe
equation to extend its validity to lower energies [20-22]. We
consider here two modifications [21,22] to the Bethe equa-
tion that have been used to fit SPs calculated from optical
data for the group of 27 elemental solids indicated above
[25].
 1. Equation of Joy and Luo [21]. This equation can be trans-
formed to the following general form:

       (eV/Å)    (10)

where     is in g/cm3 and E is in eV. The minimization proce-
dure, performed in the energy range from 200 eV to 30 keV,
leads to the following values for the coefficients:       = 12.35,
and     = 1.174. The mean percentage deviations between
values of SJL(Z,E) from Eq. (10) and the calculated SPs (found
by a procedure analogous to Eq. (8)) are shown in Fig. 1.
The mean percentage deviation averaged over the 27 ele-
ments was found to be 13.8 %.
 2. Equation of Fernandez-Varea et al.  [22]. Their equation
can be generalized to the form:

  (eV/Å)    (11)

where R = 13.6 eV is the Rydberg energy. The fit of Eq. (11) to
the calculated SPs over the same energy range gave the
following values of the coefficients:     = 13.74,     = 0.5530,
and     = -0.04782. The mean percentage deviations between
values of SFV(Z,E) from Eq. (11) and the calculated SPs by a
similar procedure are shown in Fig. 1. The mean percentage
deviation  for  all  considered elements and energies was
13.7 %.

We see that that the mean percentage deviation for all 27
elemental solids between SPs from the S-lambda approach
and SPs calculated from optical data leads (10.4 %) is less
than the corresponding values for the Joy and Luo and
Fernandez-Varea et al. expressions (13.8 % and 13.7 %, re-
spectively). In addition, Fig. 1 indicates that mean percent-
age deviation for each solid from the S-lambda approach is
often lower than the corresponding values for the other two
approaches although these deviations are larger than the
other approaches for Cr, Fe, Ni, Cu, Hf, and Bi.

Fig. 1. Mean percentage deviations between stopping powers
calculated from optical data and values from three analytical SP
expressions for 27 elemental solids. Open circles: the S-lambda
expression [Eq. (7)]; filled circles: the expression of Joy and Luo
[Eq. (10)]; filled triangles: the expression of Fernandez-Varea et al.
[Eq. (11)].

3.2 Modified Bethe equation
A universal expression for the SP was derived by Bethe

in the 1930s [23]. This expression relates the SP to the cur-
rent electron energy in an elemental solid,

(9)

where e = 2.718 is the base for natural logarithms,      is the
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4.  Compounds
The predictive SP formula [Eq. (7)] was derived from an

extensive database of SPs calculated for 27 elemental solids.
In practice, SPs are also needed for multicomponent solids,
i.e., alloys and compounds. We therefore need to test whether
the predictive SP formulas described above are applicable
to any solid.

We first rewrite the Bethe SP equation [Eq. (9)] for an
elemental solid:

         (12)

The SP for a multicomponent solid can be approximated by
the weighted sum of the stopping powers of the atomic con-
stituents of the solid with weights given by the mass frac-
tions [18,32]. Equation (10) can then be generalized in the
following way for a multicomponent solid:

 (13)

where        is the atomic density of the kth element in the
solid, M  is now the total atomic density of the solid,      is
the atomic number of the kth element,      is the atomic
fraction of the kth element, and      is the mean excitation
energy for the kth element. The summation in Eq. (13) is
extended over all n elements constituting the solid. We have
further

(14)

where       is the atomic mass of the kth element,       is the
mass fraction for the kth element, and  ρ  is now the density
of the solid. From Eqs. (13) and (14), we eventually obtain:

(eV/Å)    (15)

The atomic fractions,       , can be obtained from the stoichi-
ometry coefficients for the solid and the mass fractions,      ,
from:  

                                                                                                 (16)

Following this procedure, we can now generalize Eqs. (10)
and (11) for a multicomponent solid as follows:

     (eV/Å)    (17)

and

                                                        (eV/Å)    (18)

The predictive SP formula obtained for elemental solids
from the S-lambda approach is an explicit function of the
atomic number and energy [Eq. (7)]. The dependence on the
atomic weight and density is indirect via the IMFP. We there-
fore generalize Eq. (7) to a multicomponent solid:

 (eV/Å)    (19)

The IMFP for a multicomponent solid can be calculated
from the TPP-2M formula [33]:

(in  Å)    (20)

where                                    is the free-electron plasmon
energy (in eV), Nv is the number of valence electrons per
atom (for elemental solids) or molecule (for compounds), A
denotes here the atomic or molecular weight, and E

g
 is the

bandgap energy (in eV).

5. Results and discussion
Figures 2–6 show comparisons of SPs calculated from

optical data for five illustrative elemental solids [24,26] with
measured SPs [7,34-37] and with SPs obtained from the three
generalized SP formulas described here. The selected solids
(C, Si, Cu, Pd, and Pt) cover a wide range of atomic numbers.
Most of the measured SPs were taken from Joy’s SP data-
base [7]. Although calculated SPs are shown in Figs. 2-8 for
energies between 10 eV and 100 eV, these values are not as
reliable as those for higher energies [24] and are included
here to show general trends as a function of energy.

The upper panels of Figs. 2–6 show reasonably good
agreement between SPs calculated from optical data and the
measured SPs. Note that the experimental SPs for carbon
shown in Fig. 2(a) were measured for graphite and agree well
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with the corresponding calculated SPs. We also show cal-
culated SPs for glassy carbon in Figs. 2(a) and (b) since
these SPs were part of our initial evaluation of the S-lambda
approach [25] in which we compared the calculated SPs with
values from the three predictive expressions. Figure 2(b)
shows that SPs from the S-lambda approach agree much
better with the computed SPs than values from Eqs. (17) and
(18) (as shown in Fig. 1). Furthermore, there is some differ-
ence between two sets of measured SPs for platinum from
the same group [34,35] but there is better agreement be-
tween the later (and presumably more reliable) measurements
[35] with the SPs calculated from optical data [24].

We now show similar comparisons in Figs. 7 and 8 for
two compounds, one inorganic compound (InSb) and one
organic compound (guanine). For InSb, we have XIn = XSb =
0.5. We obtain  the following mass fractions from Eq. (16):
C In = 0.4853 and CSb = 0.5147. These values are used in cal-
culations of SPs from the three predictive expressions [Eqs.

(17), (18), and (19)]. The IMFP values needed for Eq. (19)
were calculated from experimental optical data [38]. As shown
in Fig. 7(a), there is  a  distinct  difference  in  the shapes of
the calculated and measured SPs. For energies exceeding
200 eV, however, there is reasonable agreement. Figure 7(b)
indicates that SPs  from  the S-lambda predictive formula
and from the Joy and Luo  expression  compare  well  with
the calculated SPs. SPs from the expression of Fernandez-
Varea et al .  appreciably underestimate the calculated SPs
for E < 1 keV.

For guanine (C5H5ON5), the atomic fractions are: XC = XH

= XN = 0.3125, and XO = 0.0625. The mass fractions calcu-
lated from Eq. (16) are: CC = 0.3974, CH = 0.0333, CO = 0.1059,
and CN = 0.4634. There is very good agreement between the
measured and calculated SPs for guanine in Fig. 8(a). SPs
from the S-lambda approach underestimate SPs calculated
from optical data for E < 1 keV in Fig. 8(b) while SPs from the
generalized Joy and Luo and Fernandez-Varea et al. expres-
sions both agree well with the calculated SPs.

6. Summary
We have developed an analytical expression for the prod-

uct of the SP and IMFP, the S-lambda expression [Eq. (7)].
This expression, an empirical function of Z and E, empiri-
cally describes SPs computed from optical data for a group
of 27 elemental solids [24] with a mean relative deviation of
about 10 % for electron energies between 200 eV and 30 keV.
This expression is superior to two alternative SP predictive
expressions based on modifications of the Bethe stopping-
power equation by Joy and Luo [21] and by Fernandez-
Varea et al .  [22]. Illustrative comparisons are shown for C,
Si, Cu, Pd, and Pt.

We also show comparisons of SPs from a generalized
form of the S-lambda expression [Eq. (19)] with SPs calcu-
lated from optical data for two compounds, indium anti-
monide and guanine [26]. SPs from the generalized S-lambda
expression agreed well with the calculated SPs for InSb but
there was poorer agreement for guanine for E < 1 keV. SPs
from generalized forms of the Joy and Luo and Fernandez-
Varea et al.  expressions [Eqs. (17) and (16)] agreed well with
the computed SPs for guanine but, for InSb, there was agree-
ment only with SPs from the Joy and Luo expression.

The new  S-lambda  expression is believed  to be  suitable
for Monte Carlo simulations  with  the  continuous slowing-
down   approximation   for   energies   between  200 eV  and
30 keV.

Fig. 2. Comparison of stopping powers calculated from optical
data by Tanuma et al.  [26] for glassy carbon (dot-dashed line) and
graphite (long-dashed line) with (a) measured SPs for graphite
(symbols) and (b) SPs computed for glassy carbon from the S-
lambda approach, Eq. (7) (solid line), the Joy and Luo expression,
Eq. (10) (dotted line), and the Fernandez-Varea et al.  expression,
Eq. (11) (dashed line). Inverted triangles: SPs from Luo et al.  [7,34];
squares: Joy et al.  [7,35].
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Fig. 4 Same as Fig. 3 except for copper. Circles: Luo et al. [7,36];
inverted triangles: Joy et al.  [7,35]; squares: Al-Ahmad and Watt
[37].

Fig. 5 Same as Fig. 3 except for palladium. Circles: Luo [7,34]. Fig. 6 Same as Fig. 3 except for platinum. Circles: Luo [7,34];
squares: Joy et al. [7,35].

Fig. 3 Comparison of stopping powers calculated from optical
data by Tanuma et al .  [24] (dot-dashed line) for silicon with (a)
measured SPs (symbols) and (b) SPs computed from the S-lambda
approach, Eq. (7) (solid line), the Joy and Luo expression, Eq. (10)
(dotted line), and the Fernandez-Varea et al.  expression, Eq. (11)
(dashed line). Circles: SPs from Luo et al.  [7,36].
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Fig. 7 Comparison of stopping powers calculated from optical
data by Tanuma et al.  [26] (dot-dashed line) for indium antimonide
with (a) measured SPs (symbols) and (b) SPs computed from the
generalized S-lambda (Eq. (19), solid line), Joy and Luo (Eq. (17),
dotted line), and Fernandez-Varea et al.  (Eq. (18), dashed line)
approaches. Circles: Luo. [7,34].

Fig. 8 Same as Fig. 7 except for guanine. Circles: Luo. [7,34].
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